188 research outputs found

    Syntactic Separation of Subset Satisfiability Problems

    Get PDF
    Variants of the Exponential Time Hypothesis (ETH) have been used to derive lower bounds on the time complexity for certain problems, so that the hardness results match long-standing algorithmic results. In this paper, we consider a syntactically defined class of problems, and give conditions for when problems in this class require strongly exponential time to approximate to within a factor of (1-epsilon) for some constant epsilon > 0, assuming the Gap Exponential Time Hypothesis (Gap-ETH), versus when they admit a PTAS. Our class includes a rich set of problems from additive combinatorics, computational geometry, and graph theory. Our hardness results also match the best known algorithmic results for these problems

    Streaming Algorithms for Planar Convex Hulls

    Get PDF
    Many classical algorithms are known for computing the convex hull of a set of n point in R^2 using O(n) space. For large point sets, whose size exceeds the size of the working space, these algorithms cannot be directly used. The current best streaming algorithm for computing the convex hull is computationally expensive, because it needs to solve a set of linear programs. In this paper, we propose simpler and faster streaming and W-stream algorithms for computing the convex hull. Our streaming algorithm has small pass complexity, which is roughly a square root of the current best bound, and it is simpler in the sense that our algorithm mainly relies on computing the convex hulls of smaller point sets. Our W-stream algorithms, one of which is deterministic and the other of which is randomized, have nearly-optimal tradeoff between the pass complexity and space usage, as we established by a new unconditional lower bound

    Dependent k-Set Packing on Polynomoids

    Get PDF
    Specialized hereditary systems, e.g., matroids, are known to have many applications in algorithm design. We define a new notion called d-polynomoid as a hereditary system (E, ? ? 2^E) so that every two maximal sets in ? have less than d elements in common. We study the problem that, given a d-polynomoid (E, ?), asks if the ground set E contains ? disjoint k-subsets that are not in ?, and obtain a complexity trichotomy result for all pairs of k ? 1 and d ? 0. Our algorithmic result yields a sufficient and necessary condition that decides whether each hypergraph in some classes of r-uniform hypergraphs has a perfect matching, which has a number of algorithmic applications

    Streaming Complexity of Spanning Tree Computation

    Get PDF
    The semi-streaming model is a variant of the streaming model frequently used for the computation of graph problems. It allows the edges of an n-node input graph to be read sequentially in p passes using Õ(n) space. If the list of edges includes deletions, then the model is called the turnstile model; otherwise it is called the insertion-only model. In both models, some graph problems, such as spanning trees, k-connectivity, densest subgraph, degeneracy, cut-sparsifier, and (Δ+1)-coloring, can be exactly solved or (1+ε)-approximated in a single pass; while other graph problems, such as triangle detection and unweighted all-pairs shortest paths, are known to require Ω̃(n) passes to compute. For many fundamental graph problems, the tractability in these models is open. In this paper, we study the tractability of computing some standard spanning trees, including BFS, DFS, and maximum-leaf spanning trees. Our results, in both the insertion-only and the turnstile models, are as follows. Maximum-Leaf Spanning Trees: This problem is known to be APX-complete with inapproximability constant ρ ∈ [245/244, 2). By constructing an ε-MLST sparsifier, we show that for every constant ε > 0, MLST can be approximated in a single pass to within a factor of 1+ε w.h.p. (albeit in super-polynomial time for ε ≤ ρ-1 assuming P ≠ NP) and can be approximated in polynomial time in a single pass to within a factor of ρ_n+ε w.h.p., where ρ_n is the supremum constant that MLST cannot be approximated to within using polynomial time and Õ(n) space. In the insertion-only model, these algorithms can be deterministic. BFS Trees: It is known that BFS trees require ω(1) passes to compute, but the naïve approach needs O(n) passes. We devise a new randomized algorithm that reduces the pass complexity to O(√n), and it offers a smooth tradeoff between pass complexity and space usage. This gives a polynomial separation between single-source and all-pairs shortest paths for unweighted graphs. DFS Trees: It is unknown whether DFS trees require more than one pass. The current best algorithm by Khan and Mehta [STACS 2019] takes Õ(h) passes, where h is the height of computed DFS trees. Note that h can be as large as Ω(m/n) for n-node m-edge graphs. Our contribution is twofold. First, we provide a simple alternative proof of this result, via a new connection to sparse certificates for k-node-connectivity. Second, we present a randomized algorithm that reduces the pass complexity to O(√n), and it also offers a smooth tradeoff between pass complexity and space usage.ISSN:1868-896

    A Dichotomy Result for Cyclic-Order Traversing Games

    Get PDF
    Traversing game is a two-person game played on a connected undirected simple graph with a source node and a destination node. A pebble is placed on the source node initially and then moves autonomously according to some rules. Alice is the player who wants to set up rules for each node to determine where to forward the pebble while the pebble reaches the node, so that the pebble can reach the destination node. Bob is the second player who tries to deter Alice\u27s effort by removing edges. Given access to Alice\u27s rules, Bob can remove as many edges as he likes, while retaining the source and destination nodes connected. Under the guide of Alice\u27s rules, if the pebble arrives at the destination node, then we say Alice wins the traversing game; otherwise the pebble enters an endless loop without passing through the destination node, then Bob wins. We assume that Alice and Bob both play optimally. We study the problem: When will Alice have a winning strategy? This actually models a routing recovery problem in Software Defined Networking in which some links may be broken. In this paper, we prove a dichotomy result for certain traversing games, called cyclic-order traversing games. We also give a linear-time algorithm to find the corresponding winning strategy, if one exists

    Improving the Quality of Case-Based Research in the Philosophy of Contemporary Sciences

    Get PDF
    This paper aims to address some methodological issues related to case-based research in the philosophy of contemporary sciences. We focus on the selection processes by which philosophers pick or generate a particular set of papers to conduct their case- based research. We illustrate how to use various quantitative and qualitative methods to improve the epistemic features of the selection processes, and help generate some potential case-based hypotheses for further philosophical investigation

    Alleviating Interference through Cognitive Radio for LTE-Advanced Network

    Get PDF
    In the LTE-Advanced network, some femtocells are deployed within a macroecell for improving throughput of indoor user equipments (UEs), which are referred to as femtocell UEs (FUEs). Cross-tier interference is an important issue in this deployment, which may significantly impact signal quality between Macrocell Base Stations (MBSs) and Macrocell User Equipments (MUEs), especially for MUEs near the femtocell. To relieve this problem, the Third Generation Partnership Project Long Term Evolution-Advanced (3GPP LTE-Advanced) de fined the cognitive radio enhanced femtocell to coordinate interference for LTE-Advanced Network. Cognitive radio femtocells have the ability to sense radio environment to obtain radio parameters. In this paper, we investigated the performance of existing schemes based on fractional frequency reuse. Therefore, we proposed a scheme with cognitive radio technology to improve the performance of fractional fre-quency reuse scheme. Simulation results showed that our scheme can effectively enhance average downlink throughput of FUEs as well as the total downlink throughput in LTE-Advanced Networks

    Wznowa izolowanego raka wątrobowokomórkowego w prawej komorze

    Get PDF
    corecore